DURA-PLATE® UHS PRIMER
WITH OPTI-CHECK OAP TECHNOLOGY

Product Information

Product Description
DURA-PLATE UHS PRIMER is an ultra high solids epoxy amine formulated specifically as a primer for use under Dura-Plate UHS topcoat. For use in immersion service in ballast tanks, oil tanks, and refined fuel storage tanks. Dura-Plate UHS Primer provides excellent surface wetting and adhesion properties, especially over rust pitted steel surfaces.

- Airless Spray
- Low odor
- High flash point, >200°F (93°C)
- Low Temperature Hardener for applications from 40°F to 77°F (4.5°C to 25°C).
- NSF approved to Standard 61 for potable water (tanks of 1000 gallons 25°C).
- NSF approved to Standard 61 for potable water (tanks of 1000 gallons 25°C).
- B62L210 Blue contains OAP fluorescent pigment (NSF Approved)
- Conforms to AWWA D102, ICS #1, ICS#2, OCS#5
- Suitable for use with cathodic protection systems
- Oil storage tank interiors, and refined fuel storage tank interiors
- Ballast tank interiors
- Meets MIL-PRF-23236, Type VII, Class 5, 7, 9 and 11, Grade C
- Suitable for use in Canadian Food Processing facilities categories:
- • Acceptable for use in Canadian Food Processing facilities categories:
- • Suitable for use in the Mining & Minerals Industry
- • B62L210 Blue contains OAP fluorescent pigment (NSF Approved)
- • Conforms to AWWA D102, ICS #1, ICS#2, OCS#5
- • Suitable for use with cathodic protection systems
- • Oil storage tank interiors, and refined fuel storage tank interiors
- • Water storage tanks and pipes
- • Oil storage tank interiors, and refined fuel storage tank interiors
- • Water and waste treatment plants
- • Container areas
- • Suitable for use with cathodic protection systems
- • Conforms to AWWA D102, ICS #1, ICS#2, OCS#5
- • B62L210 Blue contains OAP fluorescent pigment (NSF Approved)
- • Suitable for use in the Mining & Minerals Industry
- • Acceptable for use in Canadian Food Processing facilities categories:

Recommended Uses
For use over prepared steel or concrete surfaces in industrial and marine exposures such as:
- Meets MIL-PRF-23236, Type VII, Class 5, 7, 9 and 11, Grade C
- Ballast tank interiors
- Potable water tanks and pipes
- Oil storage tank interiors, and refined fuel storage tank interiors
- Water and waste treatment plants
- Container areas
- Suitable for use with cathodic protection systems
- Conforms to AWWA D102, ICS #1, ICS#2, OCS#5
- B62L210 Blue contains OAP fluorescent pigment (NSF Approved)
- Suitable for use in the Mining & Minerals Industry
- Acceptable for use in Canadian Food Processing facilities categories:
- D4 (Confirm acceptance of specific part numbers/exes with your SW Sales Representative)

Product Characteristics

<table>
<thead>
<tr>
<th>Finish</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Gold, Blue OAP</td>
</tr>
<tr>
<td>Volume Solids</td>
<td>98% ± 2%, mixed</td>
</tr>
<tr>
<td>Weight Solids</td>
<td>98% ± 2%, mixed</td>
</tr>
<tr>
<td>VOC (EPA Method 24):</td>
<td></td>
</tr>
<tr>
<td>(with B62V210 Hardener)</td>
<td><100 g/L; 0.84 lb/gal, mixed</td>
</tr>
<tr>
<td>(with B62V211 Hardener)</td>
<td><100 g/L; 0.84 lb/gal, mixed</td>
</tr>
<tr>
<td>Mix Ratio</td>
<td>4:1 by volume</td>
</tr>
</tbody>
</table>

Recommended Spreading Rate per coat:

<table>
<thead>
<tr>
<th>Standard</th>
<th>AWWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet mils (microns)</td>
<td>Min. 100 Max. 200 Min. 1.5 Max. 3.0</td>
</tr>
<tr>
<td>Dry mils (microns)</td>
<td>Min. 100 Max. 200 Min. 2.0 Max. 3.0</td>
</tr>
<tr>
<td>Coverage sq ft/gal (m²/L)</td>
<td>200 4.9 400 9.8 573 140 800 19.6</td>
</tr>
<tr>
<td>Theoretical coverage sq ft/m² @ 1 mil/25 microns</td>
<td>1568 (38.4)</td>
</tr>
</tbody>
</table>

Drying Schedule @ 6.0 mils wet (150 microns):

<table>
<thead>
<tr>
<th>With B62V211</th>
<th>@ 40°F/4.5°C</th>
<th>@ 55°F/13°C</th>
<th>@ 77°F/25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>To touch:</td>
<td>12 hours</td>
<td>5 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>To handle:</td>
<td>48 hours</td>
<td>16 hours</td>
<td>8 hours</td>
</tr>
<tr>
<td>To recoat:</td>
<td>minimum: 48 hours</td>
<td>16 hours</td>
<td>8 hours</td>
</tr>
<tr>
<td></td>
<td>maximum: 21 days</td>
<td>14 days</td>
<td>14 days</td>
</tr>
<tr>
<td>Cure to service:</td>
<td>10 days</td>
<td>4 days</td>
<td>24 hours</td>
</tr>
<tr>
<td>Pot Life*:</td>
<td>30-45 minutes</td>
<td>30-45 minutes</td>
<td>20-30 minutes</td>
</tr>
<tr>
<td>Sweat-in-time:</td>
<td>15 minutes</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Product Characteristics (Cont’d)

<table>
<thead>
<tr>
<th>Drying Schedule @ 6.0 mils wet (150 microns):</th>
</tr>
</thead>
<tbody>
<tr>
<td>With B62V211 @ 40°F/4.5°C @ 55°F/13°C @ 77°F/25°C</td>
</tr>
<tr>
<td>To touch: 24 hours 5 hours 3 hours</td>
</tr>
<tr>
<td>To handle: 48 hours 24 hours 8 hours</td>
</tr>
<tr>
<td>To recoat: minimum: 48 hours 24 hours 8 hours</td>
</tr>
<tr>
<td>maximum: 30 days 21 days 14 days</td>
</tr>
<tr>
<td>Cure to service: 7 days 5 days 3 days</td>
</tr>
</tbody>
</table>

Material should be at least 50°F (10°C) for optimal performance. If maximum recoat time is exceeded, abrasive surface before recoating. Drying time is temperature, humidity, and film thickness dependent. Sterilize and rinse per AWWA C652.

| Pot Life*: | 20 minutes 20 minutes 10 minutes *Dependent upon temperature and mass |
| Sweat-in-Time: | 5 minutes None None |

Performance Characteristics

<table>
<thead>
<tr>
<th>Substrate*: Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Preparation*: SSPC-SP10/NACE 2</td>
</tr>
<tr>
<td>System Tested*: 1 ct. Dura-Plate UHS Primer @ 6.0 mils (150 microns) dft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasion Resistance</td>
<td>ASTM D4060, CS17 wheel, 1000 cycles, 1 kg load</td>
<td>20.8 mg loss</td>
</tr>
<tr>
<td>Adhesion</td>
<td>ASTM D4541</td>
<td>800 psi, minimum</td>
</tr>
<tr>
<td>Corrosion Weathering</td>
<td>ASTM D5894, 6 cycles, 2016 hours</td>
<td>Rating 10 per ASTM D610 for rusting; Rating 10 per ASTM D714 for blistering</td>
</tr>
<tr>
<td>Direct Impact Resistance</td>
<td>ASTM D2794</td>
<td>30 in. lb.</td>
</tr>
<tr>
<td>Dry Heat Resistance</td>
<td>ASTM D2485</td>
<td>250°F (121°C)</td>
</tr>
<tr>
<td>Flexibility</td>
<td>ASTM D522, 180° bend, 1/2" mandrel</td>
<td>Passes, 9.7% elongation</td>
</tr>
<tr>
<td>Pencil Hardness</td>
<td>ASTM D3363</td>
<td>3H</td>
</tr>
</tbody>
</table>

www.sherwin-williams.com/protective
continued on back
Dura-Plate® UHS Primer

Recommended Systems

<table>
<thead>
<tr>
<th>Dry Film Thickness / ct. Mils</th>
<th>Microns</th>
</tr>
</thead>
</table>

Steel, NSF System:

*AWWA D102: Inside Coating System No. 1
minimum AWWA DFT
1 ct. Dura-Plate UHS Primer
1 ct. Dura-Plate UHS

*AWWA D102: Inside Coating System No. 2
minimum AWWA DFT
1 ct. Dura-Plate UHS Primer
1 ct. Dura-Plate UHS
1 ct. Dura-Plate UHS

*AWWA D102-03: Outside Coating System No. 5
minimum AWWA DFT
recommended DFT
1 ct. Dura-Plate UHS Primer
1 ct. Dura-Plate UHS
1 ct. Acrolon 218HS

Steel:

1 ct. Dura-Plate UHS Primer
4.0-8.0** (100-200)
1 ct. Dura-Plate UHS
10.0-12.0 (250-300)

Steel, Laminant System:

1 ct. Dura-Plate UHS Primer
1.0-1.5** (25-40)
1 ct. Steel-Seam FT910 as required for filling pits, and transitioning sharp edges, weld seams, etc.
40.0-45.0 (1000-1125)
1 ct. Dura-Plate UHS as required to seal fiberglass mat
10.0-12.0 (250-300)

Concrete/ Masonry:

1 ct. Corobond 100 Epoxy Primer/Sealer
4.0-6.0 (100-150)
1 ct. Dura-Plate UHS Primer
4.0-8.0** (100-200)
2 ct. Dura-Plate UHS
10.0-12.0 (250-300)
2 ct. Dura-Plate UHS
18.0-22.0 (450-550)

Tinting

Do not tint.

Application Conditions

Temperature (air, surface):
B62V210 Hardener
50°F (10°C) minimum, 110°F (43°C) maximum
B62V211 Hardener
40°F (4.5°C) minimum, 77°F (25°C) maximum
At least 5°F (2.8°C) above dew point
Material should be 50°F (10°C) to 77°F (25°C) for optimal performance.
Relative humidity: 85% maximum

Surface Preparation Standards

<table>
<thead>
<tr>
<th>Condition of Surface</th>
<th>ISO 8501-1</th>
<th>SSIPSS2000</th>
<th>SSSCPC NACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Metal</td>
<td>Sa 3</td>
<td>Sa 3</td>
<td>Sp 5</td>
</tr>
<tr>
<td>Near White Metal</td>
<td>Sa 2.5</td>
<td>Sa 2.5</td>
<td>Sp 10</td>
</tr>
<tr>
<td>Commercial Blast</td>
<td>Sa 2</td>
<td>Sa 2</td>
<td>Sp 6</td>
</tr>
<tr>
<td>Brush-Off Blast</td>
<td>C-B 2</td>
<td>Si 2</td>
<td>Sp 7</td>
</tr>
<tr>
<td>Hand Tool Cleaning Rusted</td>
<td>D St 2</td>
<td>D St 2</td>
<td>Sp 2</td>
</tr>
<tr>
<td>Power Tool Cleaning Rusted</td>
<td>D St 3</td>
<td>D St 3</td>
<td>Sp 3</td>
</tr>
</tbody>
</table>

Other acceptable topcoats:

*Dura-Plate UHS Primer can also be applied to concrete as a primer.

**When using an OAP fluorescent pigment system, use the B62L210 Primer, with a non-OAP Containing Dura-Plate UHS topcoat color.

The systems listed above are representative of the product's use, other systems may be appropriate.

Disclaimer

The information and recommendations set forth in this Product Data Sheet are based upon tests conducted by or on behalf of The Sherwin-Williams Company. Such information and recommendations set forth herein are subject to change and pertain to the product offered at the time of publication. Consult your Sherwin-Williams representative to obtain the most recent Product Data Information and Application Bulletin.

Surface Preparation

Surface must be clean, dry, and in sound condition. Remove all oil, dust, grease, dirt, loose rust, and other foreign material to ensure adequate adhesion.

Refer to product Application Bulletin for detailed surface preparation information.

Minimum recommended surface preparation:

Iron & Steel:

Atmospheric:
SSPC-SP6/NACE 3, 2 mil (50 micron)
profile or
SSPC-SP12/NACE No. 5, WJ-3/NV-2
Immersion:
SSPC-SP10/NACE2, 2-3 mil
(50-75 micron)profile or
SSPC-SP12/NACE No. 5, WJ-2/NV-2

*marine exterior hull only

Concrete & Masonry:

Atmospheric:
SSPC-SP13/NACE 6, or
ICRI No. 310.2R CSP 2-3
Immersion:
SSPC-SP13/NACE 6-4.3.1 or 4.3.2, or
ICRI No. 310.2R CSP 2-3

Ordering Information

Packaging:
Part A: 4 gallon (15.1L) container
Part B: 1 gallon (3.78L) container
Weight: 11.22 ± 0.2 lb/gal ; 1.34 Kg/L, mixed

Safety Precautions

Refer to the MSDS sheet before use.
Published technical data and instructions are subject to change without notice. Contact your Sherwin-Williams representative for additional technical data and instructions.

Warranty

The Sherwin-Williams Company warrants its products to be free of manufacturing defects in accord with applicable Sherwin-Williams quality control procedures. Liability for products proven defective, if any, is limited to replacement of the defective product or the refund of the purchase price paid for the defective product as determined by Sherwin-Williams. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY SHERWIN-WILLIAMS, EXPRESSED OR IMPLIED, STATUTORY, BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

www.sherwin-williams.com/protective
Surface Preparations

Surface must be clean, dry, and in sound condition. Remove all oil, dust, grease, dirt, loose rust, and other foreign material to ensure adequate adhesion.

Iron & Steel (atmospheric service)
Minimum surface preparation is Commercial Blast Cleaning per SSPC-SP6/NACE 3 or SSPC-SP12/NACE No. 5. For surfaces prepared by SSPC SP6/NACE 3, first remove all oil and grease from surface by Solvent Cleaning per SSPC-SP1. For better performance, use Near White Metal Blast Cleaning per SSPC-SP10/NACE 2. Blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2-3 mils / 50-75 microns). For surfaces prepared by SSPC-SP12/NACE No. 5, all surfaces shall be cleaned in accordance with WJ-2/NV2. Pre-existing profile should be approximately 2 mils (50 microns). Prime any bare steel the same day as it is cleaned or before flash rusting occurs.

Iron & Steel (immersion service)
Remove all oil and grease from surface by Solvent Cleaning per SSPC-SP1. Minimum surface preparation is Near White Metal Blast Cleaning per SSPC-SP10/NACE 2, blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2-3 mils / 50-75 microns). For SSPC-SP10/NACE 2, blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2-3 mils / 50-75 microns). For SSPC-SP10/NACE 2, blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2-3 mils / 50-75 microns). For SSPC-SP10/NACE 2 blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2-3 mils / 50-75 microns). Pre-existing profile should be approximately 2 mils (50 microns). Prime any bare steel the same day as it is cleaned or before flash rusting occurs.

Concrete and Masonry
For surface preparation, refer to SSPC-SP13/NACE 6, or ICRI No. 310.2R, CSP 2-3. Surfaces should be thoroughly clean and dry. Concrete and mortar must be cured at least 28 days @ 75°F (24°C). Remove all loose mortar and foreign material. Surface must be free of laitance, concrete dust, dirt, form release agents, moisture curing membranes, loose cement and hardeners. Fill bug holes, air pockets and other voids with Steel-Seam FT910. Primer required.

Follow the standard methods listed below when applicable:
ASTM D4258 Standard Practice for Cleaning Concrete.
ASTM D4259 Standard Practice for Abrading Concrete.
ASTM D4260 Standard Practice for Etching Concrete.
ASTM F1689 Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete.
SSPC-SP 13/Nace 6 Surface Preparation of Concrete.
ICRI No. 310.2R Concrete Surface Preparation.

Concrete, Immersion Service:
For surface preparation, refer to SSPC-SP13/NACE 6, Section 4.3.1 or 1.3.2 or ICRI No. 310.2R, CSP 2-3.

Surface Preparation Standards

<table>
<thead>
<tr>
<th>Condition of Surface</th>
<th>ISO 8501-1 BS7079:A1</th>
<th>Swedish Std. BS055900</th>
<th>SSPC</th>
<th>NACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Metal</td>
<td>Sa 3</td>
<td>Sa 3</td>
<td>Sa 3</td>
<td>SP 5</td>
</tr>
<tr>
<td>Near White Metal</td>
<td>Sa 2.5</td>
<td>Sa 2.5</td>
<td>Sa 2.5</td>
<td>SP 10</td>
</tr>
<tr>
<td>Commercial Blast</td>
<td>Sa 2</td>
<td>Sa 2</td>
<td>Sa 2</td>
<td>SP 6</td>
</tr>
<tr>
<td>Brush-Off Blast</td>
<td>Sa 1</td>
<td>Sa 1</td>
<td>Sa 1</td>
<td>SP 7</td>
</tr>
<tr>
<td>Hand Tool Cleaning</td>
<td>Rusted</td>
<td>D St 2</td>
<td>D St 2</td>
<td>SP 2</td>
</tr>
<tr>
<td></td>
<td>Pitted & Rusted</td>
<td>D St 3</td>
<td>D St 3</td>
<td>SP 3</td>
</tr>
<tr>
<td>Power Tool Cleaning</td>
<td>Rustf</td>
<td>D St 2</td>
<td>D St 2</td>
<td>SP 2</td>
</tr>
<tr>
<td></td>
<td>Pitted & Rustf</td>
<td>D St 3</td>
<td>D St 3</td>
<td>SP 3</td>
</tr>
</tbody>
</table>

Application Equipment

The following is a guide. Changes in pressures and tip sizes may be needed for proper spray characteristics. Always purge spray equipment before use with listed reducer. Any reduction must be compliant with existing VOC regulations and compatible with the existing environmental and application conditions.

Reduction Not recommended

Clean Up MEK, R6K10 or R7K104 Reducer

Airless Spray
- Unit: 45:1 Pump, minimum
- Pressure: 4000 psi
- Hose: 3/8” ID
- Tip: .015” - .017”
- Filter: 60 mesh

In order to avoid blockage of spray equipment and hose, flush equipment with MEK, R6K10 or R7K104 Reducer at least once every 30 minutes when using the B62V210 Hardener and after each kit when using the Low Temperature Hardener, and before periods of extended downtime.

Plural Component Equipment Acceptable

Brush For stripe coating and repair only
- Nylon/Polyester or Natural Bristle

Roller For stripe coating and repair only
- Cover: 3/8” woven with solvent resistant core

If specific application equipment is not listed above, equivalent equipment may be substituted.
Application Bulletin

Application Procedures

Surface preparation must be completed as indicated.

Mixing Instructions: Mix contents of each component thoroughly using low speed power agitation. Make certain no pigment remains on the bottom or the sides of the can. Then combine four parts by volume of Part A with one part by volume of Part B. Thoroughly agitate the mixture with low speed power agitation.

To ensure that no unmixed material remains on the sides or bottom of the cans after mixing, visually observe the container by pouring the material into a separate container.

Apply paint at the recommended film thickness and spreading rate as indicated below:

<table>
<thead>
<tr>
<th>ApplicationBulletin TRM.33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wet mils (microns)</td>
</tr>
<tr>
<td>Dry mils (microns)</td>
</tr>
<tr>
<td>Coverage sq ft/gal (m²/L)</td>
</tr>
<tr>
<td>Gallon (m²/L) @ 1 mil/25 micron dft</td>
</tr>
</tbody>
</table>

* See Recommended Systems on reverse side

Drying Schedule @ 6.0 mils wet (150 microns):

<table>
<thead>
<tr>
<th>Drying Schedule</th>
<th>With B62V210</th>
<th>@ 55°F/13°C</th>
<th>@ 77°F/25°C</th>
<th>@ 100°F/38°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>To touch</td>
<td>12 hours</td>
<td>5 hours</td>
<td>3 hours</td>
<td></td>
</tr>
<tr>
<td>To handle</td>
<td>48 hours</td>
<td>16 hours</td>
<td>8 hours</td>
<td></td>
</tr>
<tr>
<td>To recoat</td>
<td>minimum: 48 hours</td>
<td>16 hours</td>
<td>8 hours</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>21 days</td>
<td>14 days</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td>Cure to service</td>
<td>10 days</td>
<td>4 days</td>
<td>24 hours</td>
<td></td>
</tr>
<tr>
<td>Pot Life*</td>
<td>30-45 minutes</td>
<td>30-45 minutes</td>
<td>20-30 minutes</td>
<td></td>
</tr>
</tbody>
</table>

*Dependent upon temperature and mass

Drying Schedule @ 6.0 mils wet (150 microns):

<table>
<thead>
<tr>
<th>Drying Schedule</th>
<th>With B62V211</th>
<th>@ 40°F/4.5°C</th>
<th>@ 55°F/13°C</th>
<th>@ 77°F/25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>To touch</td>
<td>24 hours</td>
<td>5 hours</td>
<td>3 hours</td>
<td></td>
</tr>
<tr>
<td>To handle</td>
<td>48 hours</td>
<td>24 hours</td>
<td>8 hours</td>
<td></td>
</tr>
<tr>
<td>To recoat</td>
<td>minimum: 48 hours</td>
<td>24 hours</td>
<td>8 hours</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>30 days</td>
<td>21 days</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td>Cure to service</td>
<td>7 days</td>
<td>5 days</td>
<td>3 days</td>
<td></td>
</tr>
</tbody>
</table>

Material should be at least 50°F (10°C) for optimal performance.

If maximum recoat time is exceeded, abrade surface before recoating.

Drying time is temperature, humidity, and film thickness dependent. Sterilize and rinse per AWWA C652.

Pot Life*: 20 minutes, 20 minutes, 10 minutes

*Dependent upon temperature and mass

Sweat-in-time: 5 minutes

Application of coating above maximum or below minimum recommended spreading rate may adversely affect coating performance.

Clean Up Instructions

Clean spills and spatters immediately with MEK, R6K10. Clean tools immediately after use with MEK, R6K10. Follow manufacturer's safety recommendations when using any solvent.

Performance Tips

Repair of Pitted Tank Bottoms

Extensive, deep pitting:

Options:

- **Option 1**
 - Apply a full wet coat, by spray application, of Dura-Plate UHS Primer. Follow with rubber squeegee to work material into and fill the pitted areas. After recommended drying time, apply a full coat of Dura-Plate UHS at recommended film thickness.

- **Option 2**
 - Apply Dura-Plate UHS Clear Laminant Resin with 1½ oz fiberglass mat over the pitted areas. After recommended drying time, apply a full coat of Dura-Plate UHS at recommended film thickness.

- **Option 3**
 - Weld new steel plates, or use puddle welds, as required to repair pitted areas. Coat areas as recommended.

Shallow pitting, isolated areas:

Options:

- **Option 1**
 - Same as number 1 above.

- **Option 2**
 - Apply Steel Seam FT910 as required to fill the pitted areas.

- **Option 3**
 - Same as number 1 above.

When using spray application, use a 50% overlap with each pass of the gun to avoid holidays, bare areas, and pinholes. If necessary, cross-coat spray at a right angle.

Spreading rates are calculated on volume solids and do not include an application loss factor due to surface profile, roughness or porosity of the surface, skill and technique of the applicator, method of application, various surface irregularities, material lost during mixing, spillage, overthinning, climatic conditions, and excessive film build.

No reduction of material is recommended as this can affect film build, appearance, and adhesion.

Stripe coat all crevices, welds, and sharp angles to prevent early failure in these areas.

Do not mix previously catalyzed material with new.

Do not apply the material beyond recommended pot life.

In order to avoid blockage of spray equipment and hose, flush equipment with MEK, R6K10 or R7K104 Reducer at least once every 30 minutes when using the B62V210 Hardener and after each kit when using the Low Temperature Hardener, and before periods of extended downtime.

For Immersion Service: (if required) Holiday test in accordance with ASTM D5162 for steel, or ASTM D4787 for concrete.

When using an OAP fluorescent pigment system, use the B62L210 Primer, with or without Dura-Plate UHS Topcoat color.

Guidance on techniques and required equipment to inspect a coating system incorporating Opti-Check OAP Technology can be found in SSPC-TU 11. Refer to Product Information sheet for additional performance characteristics and properties.

Safety Precautions

Refer to the MSDS sheet before use.

Published technical data and instructions are subject to change without notice. Contact your Sherwin-Williams representative for additional technical data and instructions.

Disclaimer

The information and recommendations set forth in this Product Data Sheet are based upon tests conducted by or on behalf of The Sherwin-Williams Company. Such information and recommendations set forth herein are subject to change and pertain to the product offered at the time of publication. Consult your Sherwin-Williams representative to obtain the most recent Product Data Information and Application Bulletin.

Warranty

The Sherwin-Williams Company warrants our products to be free of manufacturing defects in accord with applicable Sherwin-Williams quality control procedures. Liability for products proven defective, if any, is limited to replacement of the defective product or the refund of the purchase price paid for the defective product as determined by Sherwin-Williams. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY SHERWIN-WILLIAMS. EXPRESS OR IMPLIED, STATUTORY, BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANDISABILITY AND FITNESS FOR A PARTICULAR PURPOSE.