COR-COTE® HT FF

TANK LINING AND HI-TEMP COATING

<table>
<thead>
<tr>
<th>PART</th>
<th>CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B62A295</td>
<td>GRAY - FLAKE FILLED</td>
</tr>
<tr>
<td>B</td>
<td>B62V290</td>
<td>HARDENER</td>
</tr>
<tr>
<td>B</td>
<td>B62V291</td>
<td>LOW TEMP HARDENER</td>
</tr>
</tbody>
</table>

PRODUCT INFORMATION

PRODUCT DESCRIPTION

COR-COTE HT FF HI-TEMP COATING is an epoxy novolac amine flake filled coating formulated for use under thermal insulation at elevated temperatures and for immersion service in water and hydrocarbon commodities such as gasoline, fuel oil, and diesel fuel at ambient and elevated temperatures.

- Temperature resistant to 450°F (232°C), in areas subject to wet/dry cycling
- Self priming
- Chemical resistant
- Resistant to thermal shock
- Ambient temperature cure
- High build / edge retention in one coat

PRODUCT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Finish</th>
<th>Semi-Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Gray</td>
</tr>
<tr>
<td>Volume Solids</td>
<td>85% ± 2%, mixed</td>
</tr>
<tr>
<td>Weight Solids</td>
<td>90% ± 2%, mixed</td>
</tr>
<tr>
<td>VOC (calculated)</td>
<td>140 g/L; 1.2 lb/gal</td>
</tr>
<tr>
<td>Mix Ratio</td>
<td>4:1 by volume</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended Spreading Rate per coat:</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet mils (microns)</td>
<td>9.0 (225)</td>
<td>11.0 (275)</td>
</tr>
<tr>
<td>Dry mils (microns)</td>
<td>8.0 (200)</td>
<td>10.0* (250)*</td>
</tr>
<tr>
<td>~Coverage sq ft/gal (m²/L)</td>
<td>140 (3.4)</td>
<td>180 (4.4)</td>
</tr>
<tr>
<td>Theoretical coverage sq ft/gal (m²/L) @ 1 mil / 25 microns dft</td>
<td>1440 (35)</td>
<td></td>
</tr>
</tbody>
</table>

*NOTE: Brush or roll application may require multiple coats to achieve maximum film thickness and uniformity of appearance. See recommended systems.

Drying Schedule @ 10.0 mils wet (250 microns):

- With B62V290: @ 50°F/10°C @ 77°F/25°C @ 100°F/38°C 50% RH
- To touch: 12 hours 5 hours 2 hours
- To handle: 39 hours 16 hours 6 hours
- To recoat (itself): minimum: 39 hours 16 hours 6 hours
- maximum: 21 days 21 days 14 days
- To cure: 21 days 7 days 5 days

If maximum recoat time is exceeded, abrade surface before recoating.

Topcoat within 72 hours if using a silicone acrylic.

- Pot Life: 2 hours 60 minutes 30 minutes
- Sweat-in-time: None required

Drying Schedule @ 8.0 mils wet (200 microns):

- With B62V291*: @ 35°F/1.1°C 50% RH
- To touch: 15 hours
- To handle: 24 hours
- To recoat (itself): minimum: 24 hours
- maximum: 7 days
- To cure: 7 days

If maximum recoat time is exceeded, abrade surface before recoating.

Topcoat within 72 hours if using a silicone acrylic.

- Pot Life: <2 hours
- Sweat-in-time: None Required

PRODUCT CHARACTERISTICS (Cont’d)

*Maximum recommended application temperature, when using B62V291 (Low Temp Hardener) is 55°F (13°C).

<table>
<thead>
<tr>
<th>Shelf Life</th>
<th>24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store indoors at 40°F (4.5°C) to 100°F (38°C).</td>
<td></td>
</tr>
<tr>
<td>Flash Point</td>
<td>117°F (47°C) mixed</td>
</tr>
<tr>
<td>Reducer/Clean Up</td>
<td>MEK R6K10</td>
</tr>
</tbody>
</table>

RECOMMENDED USES

- Steel and stainless steel tanks and piping under insulation
- Non-insulated structural steel and piping subjected to chemical or abrasion attack
- Use in areas subject to wet/dry cycling up to 450°F (232°C)
- Use in areas where temperature resistance up to 450°F (232°C) is required (dry service)
- Suitable for storage of gasoline, fuel oil, diesel fuel, and other similar hydrocarbon cargos
- Not certified for potable water immersion
- Water and wastewater facilities

PERFORMANCE CHARACTERISTICS

TEST NAME | **METHOD** | **RESULTS**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control of Corrosion under Thermal Insulation (Wet/Dry Thermal Cycling)</td>
<td>NACE RP0198</td>
<td>Passes System #5, up to 450°F (232°C)</td>
</tr>
<tr>
<td>Dry Heat Resistance</td>
<td>ASTM D2485</td>
<td>425°F (218°C), constant; 450°F (232°C), intermittent</td>
</tr>
</tbody>
</table>

**RESISTANCE GUIDE - IMMERSION (Ambient Temperature)*

- Alkalies...Recommended
- Crude oil...Recommended
- Diesel fuel...Recommended
- Lubricating oils.................................Recommended
- Fuel oils..Recommended
- Aromatic solvents...............................Recommended
- Hi-aromatic gasoline............................Recommended
- Ethanol...Recommended
- MTBE, ETBE, TAME.................................Recommended
- Ether/fuel blends (reformed gas).............Recommended
- Water, salt water, distilled water, & demineralized waterRecommended
- Methanol ..Not Recommended

Consult your Sherwin-Williams representative for specific application, temperature, concentration, and exposure recommendations.

Epoxy coatings may darken or yellow after application and curing.

*For elevated temperature recommendations, please contact your SW Representative.

www.sherwin-williams.com/protective

*continued on back
COR-COTE® HT FF

TANK LINING AND HI-TEMP COATING

PART A B62A295 GRAY - FLAKE FILLED
PART B B62V290 HARDENER
PART B B62V291 LOW TEMP HARDENER

PRODUCT INFORMATION

TIGHTENING

Do not tint.

APPLICATION CONDITIONS

Temperature:
- with B62V290: 50°F (10°C) minimum, 120°F (49°C) maximum
- with B62V291: 35°F (1.7°C) minimum, 55°F (13°C) maximum (air, surface, and material)

Relative humidity: At least 5°F (2.8°C) above dew point 85% maximum

Refer to product Application Bulletin for detailed application information.

PACKAGING INFORMATION

Packaging: 5 gallons (18.9L), mixed
- Part A 4 gallons (15.1L)
- Part B 1 gallon (3.78L)

Weight: 12.61 ± 0.3 lb/gal ; 1.51 Kg/L, mixed

SAFETY PRECAUTIONS

Published technical data and instructions are subject to change without notice. Contact your Sherwin-Williams representative for additional technical data and instructions.

WARRANTY

The Sherwin-Williams Company warrants our products to be free of manufacturing defects in accord with applicable Sherwin-Williams quality control procedures. Liability for products proven defective, if any, is limited to replacement of the defective product or the refund of the purchase price paid for the defective product as determined by Sherwin-Williams. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY SHERWIN-WILLIAMS, EXPRESSED OR IMPLIED, STATUTORY, BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

DISCLAIMER

The information and recommendations set forth in this Product Data Sheet are based upon tests conducted by or on behalf of The Sherwin-Williams Company. Such information and recommendations set forth herein are subject to change and pertain to the product offered at the time of publication. Consult your Sherwin-Williams representative to obtain the most recent Product Data Information and Application Bulletin.
Surface must be clean, dry, and in sound condition. Remove all oil, dust, grease, dirt, loose rust, and other foreign material to ensure adequate adhesion.

Steel/Stainless Steel, under insulation, immersion
Remove all oil and grease from surface by Solvent Cleaning per SSPC-SP1. Minimum surface preparation is Near White Metal Blast Cleaning per SSPC-SP10/NACE 2. Blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2 mils / 50 microns). Remove all weld spatter and round all sharp edges. Prime any bare steel the same day as it is cleaned. SSPC-SP11 is acceptable for small areas, repairs, and touch up only.

On stainless steel, use Aluminum Oxide grit. Do not use chlorinated solvents for cleaning stainless steel.

Steel, non-insulated, atmospheric
Minimum surface preparation is Commercial Blast Cleaning per SSPC-SP6. Power Tool Cleaning to Bare Metal per SSPC-SP11 is also acceptable. Remove all oil and grease from surface by Solvent Cleaning per SSPC-SP1. For better performance, use Commercial Blast Cleaning per SSPC-SP6/NACE 3. Blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (2 mils / 50 microns). Remove all weld spatter and round all sharp edges. Prime any bare steel within 8 hours or before flash rusting occurs.

Linear surface preparation is done in much the same manner as new concrete, however, if the concrete is contaminated with oils, grease, chemicals, etc., they must be removed by cleaning with a strong detergent. Refer to ASTM D4258. Form release agents, curing compounds, salts, efflorescence, laitance, and other foreign matter by sandblasting, shotblasting, mechanical scarification, or suitable chemical means. Refer to ASTM D4260. Rinse thoroughly to achieve a final pH between 8.0 and 11.0. Allow to dry thoroughly prior to coating.

Old
Surface preparation is done in much the same manner as new concrete, however, if the concrete is contaminated with oils, grease, chemicals, etc., they must be removed by cleaning with a strong detergent. Refer to ASTM D4258. Form release agents, hardeners, etc. must be removed by sandblasting, shotblasting, mechanical scarification, or suitable chemical means. If surface deterioration presents an unacceptably rough surface, Kem Cati-Coat HS Epoxy Surfacer is recommended to patch and resurface deterioration. If surface deterioration presents an unacceptably rough surface, Kem Cati-Coat HS Epoxy Surfacer is recommended to patch and resurface deterioration. Minimize substrate profile to achieve adequate adhesion. Minimum substrate profile to achieve adequate adhesion. Minimum substrate profile to achieve adequate adhesion.

Follow the standard methods listed below when applicable:
ASTM D4258 Standard Practice for Cleaning Concrete.
ASTM D4259 Standard Practice for Abrading Concrete.
ASTM D4260 Standard Procedure for Etching Concrete.
ASTM F1869 Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete.
SSPC-SP 13/NACE 6 Surface Preparation of Concrete ICRI No. 310.2R

Immersion Service:
In addition to the above surface preparation, Brush Blasting of the concrete surface is required.

Surface Preparation Standards

<table>
<thead>
<tr>
<th>Condition of Surface</th>
<th>ISO 8501-1</th>
<th>SSPC</th>
<th>NACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Metal</td>
<td>Sa 3</td>
<td>SP 5</td>
<td>1</td>
</tr>
<tr>
<td>Near White Metal</td>
<td>Sa 2.5</td>
<td>SP 10</td>
<td>2</td>
</tr>
<tr>
<td>Commercial Blast</td>
<td>Sa 2</td>
<td>SP 8</td>
<td>3</td>
</tr>
<tr>
<td>Brush-Off Blast</td>
<td>Sa 2.5</td>
<td>SP 4</td>
<td>4</td>
</tr>
<tr>
<td>Hand Tool Cleaning</td>
<td>CS 2</td>
<td>SP 2</td>
<td>-</td>
</tr>
<tr>
<td>Power Tool Cleaning</td>
<td>CS 2</td>
<td>SP 2</td>
<td>-</td>
</tr>
</tbody>
</table>

The following is a guide. Changes in pressures and tip sizes may be needed for proper spray characteristics. Always purge spray equipment before use with listed reducer. Any reduction must be compliant with existing VOC regulations and compatible with the existing environmental and application conditions.

Reducer/Clean UpReducer R6K10

Airless Spray
Pump..........................45:1 minimum
Pressure.......................3600 psi minimum
Hose..........................3/8" - 1/2" ID
Tip019" - .021"
Filter........................30 mesh
Reduction.....................As needed, up to 5% by volume

Conventional Spray
Gun............................Binks 95
Fluid Tip.......................66/65
Air Nozzle....................66PR
Atomization Pressure........65 - 75 psi
Fluid Pressure..............15 - 20 psi
Reduction.....................As needed, up to 5% by volume

Brush, small areas only
Brush..........................Natural Bristle
Reduction.....................As needed, up to 5% by volume

Roller, small areas only
Cover..........................3/8" woven with solvent resistant core
Reduction.....................As needed, up to 5% by volume

If specific application equipment is not listed above, equivalent equipment may be substituted.
PROTECTIVE & MARINE COATINGS

APPLICATION BULLETIN

TRM.54

COR-COTE® HT FF
TANK LINING AND HI-TEMP COATING

APPLICATION PROCEDURES

Surface preparation must be completed as indicated.

Mixing Instructions: Mix contents of each component thoroughly using low speed power agitation. Make certain no pigment remains on the bottom of the can. Then combine 4 parts by volume of Part A with 1 part by volume of Part B. Thoroughly agitate the mixture with power agitation. Re-stir before using.

If reducer solvent is used, add only after both components have been thoroughly mixed, after sweat-in.

Apply paint at the recommended film thickness and spreading rate as indicated below:

<table>
<thead>
<tr>
<th>Wet mils (microns)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry mils (microns)</td>
<td>9.0 (225)</td>
<td>11.0 (275)</td>
</tr>
<tr>
<td>Coverage sq ft/gal (m²/L)</td>
<td>8.0 (200)</td>
<td>10.0* (250)*</td>
</tr>
<tr>
<td>Theoretical coverage sq ft/gal (m²/L)</td>
<td>140 (3.4)</td>
<td>180 (4.4)</td>
</tr>
</tbody>
</table>

Sweat-in-time: 60 minutes

If maximum recoat time is exceeded, abrade surface before recoating.

Drying time is temperature, humidity, and film thickness dependent. Topcoat within 72 hours if using a silicone acrylic.

| Pot Life | <2 hours |
| Sweat-in-time | None Required |

Recommended Spreading Rate per coat:

Drying Schedule @ 10.0 mils wet (250 microns):

With B62V290: @ 50°F/10°C @ 77°F/25°C @ 100°F/38°C 50% RH
- To touch: 12 hours 5 hours 2 hours
- To handle: 39 hours 16 hours 6 hours
- To recoat (itself): minimum: 39 hours 16 hours 6 hours maximum: 21 days 21 days 14 days
- To cure: 21 days 7 days 5 days

If maximum recoat time is exceeded, abrade surface before recoating.

Drying time is temperature, humidity, and film thickness dependent. Topcoat within 72 hours if using a silicone acrylic.

| Pot Life | 2 hours |
| Sweat-in-time | None required |

Drying Schedule @ 8.0 mils wet (200 microns):

With B62V291*: @ 35°F/1.7°C 50% RH
- To touch: 15 hours
- To handle: 24 hours
- To recoat (itself): minimum: 24 hours maximum: 7 days
- To cure: 7 days

If maximum recoat time is exceeded, abrade surface before recoating.

Drying time is temperature, humidity, and film thickness dependent. Topcoat within 72 hours if using a silicone acrylic.

| Pot Life | <2 hours |
| Sweat-in-time | None Required |

Recommended application temperature, when using B62V291 (Low Temp Hardener) is 55°F (13°C).

Application of coating above maximum or below minimum recommended spreading rate may adversely affect coating performance.

PerforMance Tips

Stripe coat crevices, welds, and sharp angles to prevent early failure in these areas.

When using spray application, use a 50% overlap with each pass of the gun to avoid holidays, bare areas, and pinholes. If necessary, cross spray at a right angle.

Spreading rates are calculated on volume solids and do not include an application loss factor due to surface profile, roughness or porosity of the surface, skill and technique of the applicator, method of application, various surface irregularities, material lost during mixing, spillage, overthinning, climatic conditions, and excessive film build.

Excessive reduction of material can affect film build, appearance, and adhesion.

Excessive film build, poor ventilation, and cool temperatures may cause solvent entrapment and premature coating failure.

For Immersion Service: (if required) Holiday test in accordance with ASTM D5162 for steel, or ASTM D4787 for concrete.

Do not mix previously catalyzed material with new.

Do not apply the material beyond recommended pot life.

In order to avoid blockage of spray equipment, clean equipment before use or before periods of extended downtime with Reducer R6K10.

Temperatures above 77°F (25°C) will shorten the pot life.

Do not apply over 10.0 mils (250 microns) total dft when used in service above 300°F (149°C).

Not certified for potable water immersion.

Refer to Product Information sheet for additional performance characteristics and properties.

Clean up Instructions

Safety Precautions

Refer to the MSDS sheet before use.

Published technical data and instructions are subject to change without notice. Contact your Sherwin-Williams representative for additional technical data and instructions.

Disclaimer

The information and recommendations set forth in this Product Data Sheet are based upon tests conducted by or on behalf of The Sherwin-Williams Company. Such information and recommendations set forth herein are subject to change and pertain to the product offered at the time of publication. Consult your Sherwin-Williams representative to obtain the most recent Product Data Information and Application Bulletin.

Warranty

The Sherwin-Williams Company warrants our products to be free of manufacturing defects in accord with applicable Sherwin-Williams quality control procedures. Liability for products proven defective, if any, is limited to replacement of the defective product or the refund of the purchase price paid for the defective product as determined by Sherwin-Williams. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY SHERWIN-WILLIAMS, EXPRESSED OR IMPLIED, STATUTORY, BY OPERATION OF LAW OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

www.sherwin-williams.com/protective