

INVERPUL PE/P

PUL PE/P High Gloss serie 211

Group	211 – Polyester High - gloss		
Curing	min: 180°C @ 15' to 27' max: 200°C @ 7' to 11'		
Surface	High gloss smooth appearance		
Gloss	85 - 95 at 60°		
Approvals	MED		

PRODUCT DESCRIPTION

A high gloss TGIC-free thermosetting polyester powder coating featuring excellent resistance to UV radiation and outdoor weathering.

The powder forms a protective and decorative film with enhanced outdoor resistance.

Good mechanical and chemical resistance against common oils, chemicals and fuels.

Can be used on all common metallic substrates, steel, aluminium and galvanised steel, and is suitable for exterior applications.

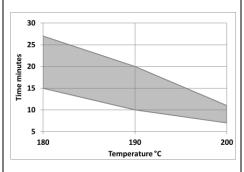
Storage Life:

Store at temperatures lower than 30°C;. Storage life in original package: 18 months.

CHARACTERISTICS

Spec. Gravity (kg/l): 1,25-1,65DFT (micron): 60-80Theoretical Coverage @60um: $11 \text{ m}^2/\text{kg}$

Recommended film thickness:


Dry: 60 -80 microns

APPLICATION

Suitable for automatic and manual electrostatic application
Please contact your Sherwin-Williams representative to discuss tribo-static application

Curing Cycle

Substrate temperature		
200°C		
190°C		
180°C		

CHEMICAL RESISTANCE

Immersion method for 48 hours at ambienttemperature into:

CHEMICAL	RESULT
Hydrogen chloride 10%	intact
Nitric acid 30% matt, but was	shing off
Saturated hydrogen sulphide	intact
Hydrogen peroxide 40 volumes	intact
Ammonium hydroxide 10%	intact
Ammonium hydroxide 33%	intact
Sodium hydroxide 5%	intact
Tartaric acid 5%	intact
Citric acid 5%	intact
Lactic acid 5%	intact
Ethanol	intact
N-butanol	intact
Petroleum ether slightly s	oftened

SUBSTRATE PREPARATION

The surface treatment should be chosen according to the type of substrate and the required performance.

The surface to be coated must be free from oxidation, oil, grease or any other form of contamination.

A good quality pretreatment process is recommended for optimum performance.

Final user should select the proper pretreatment based on corrosion resistance performance.

Where required, the corrosion resistance can be enhanced using a primer system.

		Substrate			
Pretreatment		Aluminum	Steel	Galvanized Steel	Metallized Steel
Chemical	Cr-free (Zr, Ti, Oxilanes or alternatives)	>		✓	
	Pre-anodising	>			
	Chromate	>		✓	
	Phospho- chromate	✓			
	Iron phosphate		1		
	Zinc phosphate		✓	✓	
	Nano-ceramic		✓		
cal	Sand blasting		✓		
Mechanical	Soft blasting			✓	1
	Sweeping			✓	✓

PERFORMANCE DATA

A zinc phosphated steel test panel (UNI sheet) with a 60um coating cured 20 minutes at 180°C satisfied the following requirements:

Gloss 60°:

31 - 80 UNI EN ISO 2813:2014

Buchholz indentation test:

more than 90 UNI EN ISO 2815

Pendulum-rocker hardness : Persoz

pendulum

more than 300 UNI EN ISO 1522

Erichsen cupping test (mm):

more than 5 UNI EN ISO 1520

Direct impact test (cm.Kg):

more than 25 ASTM D 2794; ISO 6272-2:2002

Reverse impact test (cm.kg):

more than 25 ASTM D 2794; ISO 6272-2:2002

Conical mandrel size: Bend test

maximum 10 mm UNI EN ISO 6860

Crosscut adhesion (2mm) (GT):

Class 0 UNI EN ISO 2409

Salt spray test:

1000 hours Scribe creep 3-6 mm UNI ISO 9227

Resistance to humidity: (Humidity test)

500 hours later – no change

CAUTION

FOR INDUSTRIAL SHOP APPLICATION

Thoroughly review product label and Safety Data Sheet (SDS) prior to using this product.

A Safety Data Sheet is available from your local Sherwin-Williams facility or distributor

Note: Product Data Sheets are periodically updated to reflect new information relating to the product. It is important that the user obtain the most recent Product Data Sheet for the product being used. The information, rating, and opinions stated here pertain to the material currently offered and represent the results of tests believed to be reliable. However, due to variations in user handling and methods of application which are not known or under our control, The Sherwin-Williams Company cannot make any warranties as to the end result.

Rev. date: 23/06/2023 GI.MNB.15211