

INVERPUL PE/P BT FTX

PUL PE/P Low Bake FineTextured serie 229

Group	229 – Polyester Low Bake		
Curing	min: 160°C @ 20' to 40' max: 190°C @ 6 to 11'		
Surface	Fine Textured appearance		
Gloss	N/A		
Approvals			

PRODUCT DESCRIPTION

A low bake TGIC-free thermosetting polyester powder coating featuring excellent resistance to UV radiation and outdoor weathering.

The product forms a protective and decorative film with enhanced outdoor resistance.

The fine texture finish imparts elegant aesthetics to the coated part.

The product is particularly suited to exterior applications and is suitable for use in a wide range of applications, including metal office furniture, lockers, fenesrtation products, conservatories, garden furniture, street furniture.

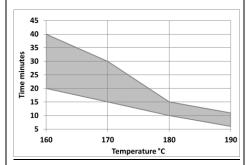
Storage Life:

Store at temperatures lower than 30°C. Storage life in original package: 18 months.

CHARACTERISTICS

Spec. Gravity (kg/l): 1,25-1,65DFT (micron): 60-80Theoretical Coverage @60um: $11 \text{ m}^2/\text{kg}$

Recommended film thickness:


• Dry: 60 - 80 μm

APPLICATION

Suitable for automatic and manual electrostatic application
Please contact your Sherwin-Williams representative to discuss tribo-static application

Curing Cycle

Time	Substrate temperature		
6 – 11 min	190°C		
10 - 15 min	180°C		
15 - 30 min	170°C		
20 - 40 min	160°C		

CHEMICAL RESISTANCE

Immersion method for 48 hours at ambient temperature into:

CHEMICAL	RESULTS
Hydrogen chloride 10%	intact
Saturated hydrogen sulp	ohide intact
Hydrogen peroxide 40 v	olumes intact
Ammonium hydroxide 1	.0% intact
Ammonium hydroxide 3	intact
Sodium hydroxide 5%	intact
Tartaric acid 5%	intact
Citric acid 5%	intact
Lactic acid 5%	intact
Ethanol	intact
N-butanol	intact
Petroleum ether	slightly softened

SUBSTRATE PREPARATION

The surface treatment should be chosen according to the type of substrate and the required performance.

The surface to be coated must be free from oxidation, oil, grease or any other form of contamination.

A good quality pretreatment process is recommended for optimum performance.

Final user should select the proper pretreatment based on corrosion resistance performance.

Where required, the corrosion resistance can be enhanced using a primer system.

		Substrate			
Pretreatment		Aluminum	Steel	Galvanized Steel	Metallized Steel
	Cr-free (Zr, Ti, Oxilanes or alternatives)	~		✓	
	Pre-anodising	>			
<u> </u>	Chromate	>		✓	
Chemical	Phospho- chromate	✓			
	Iron phosphate		1		
	Zinc phosphate		✓	✓	
	Nano-ceramic		✓		
Mechanical	Sand blasting		1		
	Soft blasting			✓	✓
	Sweeping			✓	✓

INVERPUL PE/P BT FTX

PUL PE/P Low Bake FineTextured serie 229

PERFORMANCE DATA

A zinc phosphated steel test panel (UNI sheet), DFT 60 microns, Stoving 20 minutes at 160°C satisfied the following requirements,

Erichsen cupping test (mm):

more than 5 UNI EN ISO 1520

Direct impact test (cm.Kg):

more than 25 ASTM D 2794; ISO 6272-2:2002

Reverse impact test (cm.kg):

more than 25 ASTM D 2794; ISO 6272-2:2002

Conical mandrel: Bend test

Maximum 10 mm UNI EN ISO 6860

Crosscut adhesion (2mm) (GT):

Class 0 UNI EN ISO 2409

Salt spray test:

1000 hours Scribe creep 3-6 mm UNI ISO 9227

Resistance to humidity:

(Humidity test) 500 hours no change UNI EN ISO 6270-2:2005

CAUTION

FOR INDUSTRIAL SHOP APPLICATION

Thoroughly review product label and Safety Data Sheet (SDS) prior to using this product.

A Safety Data Sheet is available from your local Sherwin-Williams facility or distributor

Note: Product Data Sheets periodically updated to reflect new information relating to the product. It is important that the user obtain the most recent Product Data Sheet for the product being used. The information, rating, and opinions stated here pertain to the material currently offered and represent the results of tests believed to be reliable. However, due to variations in user handling and methods of application which are not known or under our control, The Sherwin-Williams Company cannot make any warranties as to the end result.

Rev. date: 23/06/2023 GI.MNB.15229